Generic regular decompositions for parametric polynomial systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic regular decompositions for parametric polynomial systems

This paper presents a generalization of our earlier work in [19]. In this paper, the two concepts, generic regular decomposition (GRD) and regular-decomposition-unstable (RDU) variety introduced in [19] for generic zero-dimensional systems, are extended to the case where the parametric systems are not necessarily zero-dimensional. An algorithm is provided to compute GRDs and the associated RDU ...

متن کامل

Solving parametric polynomial systems

We present a new algorithm for solving basic parametric constructible or semi-algebraic systems like C = {x ∈ C, p1(x) = 0, , ps(x) = 0, f1(x) 0, , fl(x) 0} or S = {x ∈ R, p1(x) = 0, , ps(x) = 0, f1(x)> 0, , fl(x)> 0}, where pi, fi ∈Q[U , X], U = [U1, , Ud] is the set of parameters and X = [Xd+1, , Xn] the set of unknowns. If ΠU denotes the canonical projection onto the parameter’s space, solvi...

متن کامل

Universal regular control for generic semilinear systems

We consider discrete-time projective semilinear control systems ξt`1 “ Aputq ̈ ξt, where the states ξt are in projective space RPd ́1, inputs ut are in a manifold U of arbitrary dimension, and A : U Ñ GLpd,Rq is a differentiable mapping. An input sequence pu0, . . . , uN ́1q is called universally regular if for any initial state ξ0 P RPd ́1, the derivative of the time-N state with respect to the i...

متن کامل

Elimination for generic sparse polynomial systems

We present a new probabilistic symbolic algorithm that, given a variety defined in an n-dimensional affine space by a generic sparse system with fixed supports, computes the Zariski closure of its projection to an l-dimensional coordinate affine space with l < n. The complexity of the algorithm depends polynomially on combinatorial invariants associated to the supports.

متن کامل

On Solving Parametric Polynomial Systems

Border polynomial and discriminant variety are two important notions related to parametric polynomial system solving, in particular, for partitioning the parameter values into regions where the solutions of the system depend continuously on the parameters. In this paper, we study the relations between those notions in the case of parametric triangular systems. We also investigate the properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Systems Science and Complexity

سال: 2015

ISSN: 1009-6124,1559-7067

DOI: 10.1007/s11424-015-3015-6